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Experimental study of crease formation in an axially compressed sheet

Sahraoui Chab and Francisco Melo
Departamento de Bica de la Universidad de Santiago, Avenida Ecuador 3493, Casilla 307, Correo 2, Santiago, Chile
(Received 26 March 1997

In our study of crease formation in a cylindrical panel subject to axial compression, we found that the
maximum vertical deflectiod increases in the orthoradial directibrand saturates when the panel is larger
than half a cylinder. The length of the creaselecreases by increasing the panel opening angle, and saturates
to a constant value when the opening angle is closentoThe stress corresponding to initial crease formation
goes as R, whereR is the radius of curvature of the panel. Profilometric measurements reveal the presence
of a region around the singularity where the stress is focused and where the deformation is plastic.
[S1063-651X97)03009-2

PACS numbe(s): 46.30.Lx, 62.20.Fe, 68.55.Jk

I. INTRODUCTION [8-10. To our knowledge, the Donnell equations have not
been studied systematically.

Thin plates or membranes in a crumpled state occur in Further studies based on FvK equations obtained a useful
many systems at various aspects and length scales, frorglation between the deformation energy and the size of a
membranes of polymerized phospholipids to crashing of car§dge in a bent shedtl,11,13 by using scaling arguments
and Cans{l_zq' A Crump|ed sheet is characterized by a dis_and boundary Iayer analySiS. Addltlona”y, an efficient nu-
tribution over its surface of sharp ridges and permanenmerical method to solve the FvK equations in the case of a
creases. Each crease terminates in pointlike defectingn- ~ crumpled sheet was proposgtB]. These works were suc-
larities, which are points where the yield limit of the material ¢€SSful in describing the main features of a simple crumpled
has been exceedd&]. Unlike phospholipidic membranes, surface, but none has considered reahspc boundary cpnd|-
the crumpling of a sheet of macroscopic elastic matégiat tions. Numerlca_ll_ methods seem more suitable to investigate
per, aluminum, copper, polypropylene, ¢toequires com- boundary conditions effectd, 13,

ression. such as we apoly in makind a paper ball. In this Experimentally, a well-controlled nucleation of singular-
P ’ pply g apap ' ity is not an easy task. However, apart from a crumpled sheet

. i
case, scars left after the .crumpll|r_19 process are due to tI«l%,paper, singularities can be seen in a postbuckled cylinder.
focusing of the stress at singularities. , Since the pioneering work of von Kaan and co-workers

From a theoretical point of view, the relation between ther1 14 several studies were devoted to initial stage cylinder
geometric aspects of the formation of an isolated smgularlt)buck"ng for industrial and aeronautical purpodd®,14—
on a surface and the singularities mechanical origin is rela16]_ At the first stage of cylinder buckling a pattern of
tively well understood. One of the key points is that particu-squares appears. Singularities were not investigated, as they
lar solutions of the Fopl—von Kaman (FvK) equations de- appear only when the cylinder is postbuckled. Although von
scribing large deformations of thin plates are developabl&arman predicted that for short cylinders in the postbuckling
cones[5]. It is important to notice that developable surfacesregime sharp ridges and narrow diamonds appear, none of
and particularly developable cones are obtained from, or apthese experiments reported studies either on singularities or
plied to, a plane without changing distances. They have zeron short cylinders(the singularity appears at the meeting
Gaussian curvature, and nonzero mean curvdtéifeA d point of four squares However, it was stated that narrow
cone has two regions of opposite curvature, one convex and@iamonds could have been seen in the case of short cylinders
the other concave. The concave region is separated from the
convex region by two ridge§-ig. 1). Another characteristic Singularity
of d cones is that any circle of radiusvhose center is at the Convex region
singularity has its perimeter7® after thed cone is formed
as well; i.e., the mapping between a plane andl @one is
isometric[7].

Even though the FvK equations do not explicitly include
an initial curvature, singular solutions are possible. In prac-
tice, in order to generate singularities in a sheet, it is neces-
sary to bend it, pushing the bent sheet in the axial direction
causes singularities to nucleate. For instance, when the two
edges of a flat sheet of paper are pushed together, one ob-
serves only a wavy pattern: no creases, sharp ridges, or sin-
gularities appear. The equations used when an initial curva-
ture is introduced are commonly called the Donnell FIG. 1. Ad cone obtained by bending and compressing a planar
equations, and are a slight modification of the FvK equationsheet.
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FIG. 2. The geometry used in our experiment. Right top is a side 0 0.5 1 1.5 )

view, and the bottom is an end view. .
Displacement (mm)

[16].' Further St“P','es focused on the effect of |n_|t|al wreg_u- FIG. 4. Three different runs, under the same conditions, show-
larities on the critical load and on the postbuckling equilib-jng the joad vs the displacemeditfor a panel under compression.
rium load. It was shown that although initial imperfections the parameters ate=90 mm,=60 mm, andR=232.7 mm.
were not eliminated, the results were reproducible under the
same experimental conditiof$5]. _ o Il. EXPERIMENTAL CONSIDERATION
In this paper we study the nucleation of singularities in a
thin cylindrical panel submitted to axial compression. We We submit a panel of thickness width | in the circum-
show that, in this case, a crease can be seen as two oppodiegential direction, lengt., opening angle3, and radiusR
d cones which tips are separated by a distance equal to ttie axial compressioitFig. 2). We chose this geometry be-
crease length. In the following, the crease lenitlis the  cause it is the simplest curved surface one can crumple. It is
distance separating the two singularities, and the ridge is theossible to consider a hyperbolic or parabolic shape, but
line shown in Fig. 7. We investigate mechanical and geometsuch surfaces lie in the same class as the cylinder, and we
ric properties of creases, namely, critical load, radius of cureéxpect no qualitative difference with respect to the nucle-
vature, and characteristic sizes as a function of geometrigtion of singularities.
parameters. Our cylindrical panels are 0.1-mm-thick sheets of DHP
This paper begins with a description of the experimentacopper. The thickness of the panels is constant within 1%.
setup and sample preparations. In Secs. Il and IV, we deSuch panels are obtained by cold rolling a thicker plate. This
scribe the patterns observed in both narrow and wide panelgrocess produces what is called residual forces within the
Section IV includes measurements of the global properties dpulk of the plate, and creates an anisotropy with respect to
the patterngvertical deflection and crease lengtm Sec. Vv, the two in-plane directions, parallel and perpendicular to the
we present results concerning the critical load and its depertolling direction. In order to eliminate the flattening induced
dence on the radius of the panel. Section VI is devoted t&train of the grains, we anneal the shigét, 18. The residual
local properties of a single crease. Finally, a conclusion istress is checked by measuring the deformation of the unit
presented. cell of the copper crystal with respect to a cubic one using
x-ray diffraction.
Cylindrical shells are compressed by a machine which
Fixed Ground fastening Computer consists of two parallel arms. One arm is fixed, while the
T ' = other is moved smoothly at a constant compression rate
monitored by a microstepping mot@arker, Compumotor

I;ilgidom The moving arm is pushed toward a fixed arm by a screw
PP \. ball of diameter 30 mm. A vertical disc with a series of
! 0.2-mm-wide and 2-mm-deep concentric grooves is mounted
Fixed . .
bars on each arm. The radius of the grooves varies from 13.9 to

Load cell—H

58.45 mm. One disc is connected to a load ¢RkvereR;
Transducers Inc. Model 363/9363 Cerritos, \a#hich mea-
sures the force on the sample. The load cell is connected to a
computer which stores and analyzes the dé&tg. 3). We
have checked the rigidity of our load cell, and found that any
possible shortening, due to deformations, is less than
5% 10> mm/kgf over a panel’s deformation of about 4 mm
and a force range of 1000 kgf. The load cell is capable of
resolving 0.5 kgf over a range of 1000 kgf.

To check the parallelism of the two disks we simulta-

FIG. 3. The compression machine. neously compress two panels of the same size and the same

Microstepping motor —
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Crease

FIG. 7. The structure observed when compressing a large panel.
With further compression, another series of creases appears and the
FIG. 5. A crease which appears in the middle of a small openinghain of creases develops in the circumferential direction. The

angle panel. The cutAA and BB are the line followed by the opening angle in this case is 4.33 rad.
profilometer and called longitudinal and transversal directions in
Fig. 12. critical transition, and the creases that fill the panel do not alll
appear at the same time. We then measure the maximum
radius by placing the panels opposite each other between tliérce necessary to buckle the panel. The jump in equilibrium
two discs. When the two discs are parallel, the buckling forceposition as the crease appears involves a release of elastic
must be twice the buckling force of a single panel. The com-energy, and thus explains the rapidity of the buckling process
pression rate is kept low0.01 mm/$, which reduces the justifying the subcritical character of the transition.
effects of initial off-plane imperfections and irregularities of  In our experiments, contrary to the case for full cylinders,
the clamped edges due to motion and initial misalignment obne has an additional parameter, the opening a@dteFig.
the panel within the grooves. Although it was shown theo-2, which is variable. The dependence of the crease properties
retically [19] that imperfections, curved edges near theonl, R, andp is discussed in the following sections.
grooves, have no serious effects on the magnitude of the
critical force, since they are damped out exponentially in the
compression directiof20], we nevertheless attempt to avoid
them. Initial imperfections can sometimes lower the critical The results discussed in this section are obtainedgfor
load[10]. It was also shown in experiments on closed cylin-less than 2 rad. The critical force necessary to create a crease
ders that the postbuckling load is insensitive to initial irregu-for three different runs under the same conditions corre-
larities [15]. In contrast, we observed that the pattern strucsponds to the peaks in Fig. 4. During compression, the force
ture is strongly affected by initial imperfections, such asincreases nearly linearly except at the beginning of the load-
small deflections of the clamped edges on which the panel i;ig when the panel slides into the grooves. Even though such
supported or the nonparallelism of the panel. For instance, arearrangements occur, the critical force is reproducible to
initial angle of the order of a hundredth of a radian betweernwithin 5%.
the supporting edges can affect the results. The critical force For the runs shown in Fig. 4 and for all lengths the
corresponds to the occurrence of a crease, but it is difficult teritical load is equal to the maximum load necessary to col-
characterize because the crease nucleation resembles a sldpse the panel. At the critical force, the stored elastic energy
is released abruptly by forming a crease at the middle of the
panel. From Fig. 5, one can see that a crease is composed of

Ill. SMALL OPENING ANGLE

‘ two opposited cones with common concave parts. In the
following, the line limiting the crease deflection and the rest
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FIG. 6. Force vs the displacement {8.=4.3. Note the second- B (radians)

ary peaks before the maximum load; each one corresponds to the
nucleation of a crease. FIG. 8. Normalized crease length vs the opening amyle
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0.13 maximal load after which the force decreases. These second-
| | ary peaks correspond to the nucleation of creases. The last
and maximum peak corresponds to the buckling of the whole
011\ i panel, after which no more creases appear. The load, after
: _ the maximum for smal|3 (Fig. 4 decreases more rapidly
€ 009 i than the load for larg@ (Fig. 6): In the first case, the panel
) is folded after the first crease appears.
- ] The structure observed after all the creases have appeared
0.07 L | resembles a string of diamondsig. 7) similar to those ob-
served in experiments on thin compressed circular cylinders,
i il although they have observed only squared credsBs).
0.05 s ' w w The anglea is smaller than the angle in the case for closed
25 35 4.5 5.5 cylinders. In this case the creases are more flattened. The

P (radians) vertical deflection is more pronounced, and the diamonds
flanks are sharper. We measured the angleof these
FIG. 9. Normalized vertical deflection vs the opening angie  diamond-shaped patterns and found it to be between 75° and

radians. 80°, and independent of the opening angle, but smaller than
the value of 90° predicted theoreticallg].

of the panel will be called thadge, and the line joining the If one leaves a long buckled panel under compression,

singularities will be called therease lengthThe distance another series of diamonds appears, filling the panel ixthe

between thal-cone vertices is the crease length direction. In this work we considered only the first series, as

We measured the diamond-shaped pattern opening anglee second one appears after the first diamonds have been
a (« is defined in Fig. b and found it to be of the order of totally folded, which affects the length of the panel. As the
88°, close to the value of 90° observed for a closed cylindewidth increases, the number of creases and the wavelength
[9]. For panel lengths larger tharR5the strip buckles like a  (size of each creagselected also increase. The crease length
rectangular strip after the occurrence of a cr§@4¢. How- X decreases, as is shown in Fig. 8, where we plot the crease
ever, for narrow panels with an intermediate opening anglelength normalized by the radius.
while keeping the panel under compression the tip of the One can observe that the crease lengtdecreases very
crease propagates toward the free borders and leaves behigaickly when 8 goes to 2r. For 8~ 27 the crease length
a wake of high curvature. This phenomena, which shows theaturates to a valué, which, we believe, corresponds to the
presence of a dynamic of the tip, will be the object of futurecrease length for closed cylinders. We also measured the
work. maximum vertical deflectiod as a function of the opening
We remark that for closed cylinders the wavelength of theangle 8. The vertical deflection increases when the argjle
pattern in the direction parallel to the compression is giverincreases, and tends to saturate when the panel is larger than
by the radius of the cylinder times the thickn¢$8]. How-  a half cylinder, i.e.8~ . Figure 9 shows the variations of
ever, in our case the size of the crease is also selected by titge maximum vertical deflection versus the opening angle.
opening angle. This point will be described later in the text.We believe that, when the opening angle approacheslie
vertical deflection goes to a value which corresponds to ver-
IV. LARGE OPENING ANGLE tical deflections in the case of a buckled closed cylinder. As
both crease length and maximum deflection saturate when
In this section, the results obtained correspond to an opefpe opening angle approaches,2we measured the length
ing angle 8 larger than 2 rad. Figure 6 shows the loadingcrease for3 = 6 rad as a function of the panel radiBsfor
force versus displacement; several peaks occur before tr!s?lengthL —40 mm. Figure 10 shows the variations of the
crease length with the radius of the panel. From the linear fit
to the curve X~0.7R. In our experiment, the singularities
and creases nucleate in a subcritical way, releasing the elastic
energy stored in the panel during the compression. The
creases appear suddenly by causing an inward deflection in
the panel. von Kaman and Tsien predicted that in the case of
thin closed cylinders the wavelength of the pattern is given
by the ratio of the radius to the thickness. The transition from
squares to ellipses is controlled by the ratio of the wave
amplitude of the cylindrical shell buckled shape and the
thickness, but this model failed to give these sharp diamonds
at large deflection$10]. We also notice, for a fixed large
opening angle, that the creases are self-similar. In fact, by
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, sumed constar(or a slowly varying function of the opening
T\i angle B), and independent of the length scales in the prob-
lem. As a result of the competition between a bending energy

25 . . - .
which favors large creases and a singularity energy which

N\
% favors small creases, we found thét R, in agreement with

ﬁ\ ] the experimental results of Fig. 10 and with the fact that the

#\% singularity energy is constant and independent of the crease
§ length and of the panel radius. From the best fit to the curve
in Fig. 10, we find thak,~0.29.

The d-cone opening angle is related to our experimental
L angle 8. In fact, for a givenR, smaller isg, is thed-cone

angle is higher. If we fix the opening anglat which the
0‘51 5 2‘5 35 crease saturatgsand vary the radius as in Fig. 10, fit the
' 'R (em) ' same crease number in the panel, and the shgmne num-
ber, the distance between tHecone vertices will then vary.
On the other hand, if we fix the radius and vary the opening
angle, the number of the creases vary, and so do their
lengths. The creases are no longer self-similar. The singular-
depends in such a way versus the radius. ity curvature and energy are not constants.

To explain the origin of the creases self-similarity and the We also studied panels for which the opening angle is
reason for the dependence Xfon R for a large opening large, but whose length is much larger than the rafi@s4)
ang|e, we assume that the energy of a buckled pane| can %l In this case the structure of the pattern depends drasti-
Separated into two contributions, name|y, the crease Curva:a”y on the initial imperfections, and the Stablllty of the shell
ture energy far from the Singu|aritie3’ and the Singu|arityi5 difficult to control. In addition, the size of the crease in-
energy. Subsequently, we will show how the competitioncreases in the direction of the compression, and number in
between these energies determines the selection of tHBe circumferential direction decreases with the increasing
creases length. The curvature energy of the crease far frofngth of the panel.
the singularities, without the term containing the Gaussian
curvature isE,=D [ds(V?¢)2, whereD is the rigidity and V. CRITICAL LOAD MEASUREMENT
is equal toEh®/24(1— o) [22]. Following Refs.[1,12,22,
we can evaluate this energy far from the two singularities
i.e., in a strip of lengtlX, depth{, and widthd. The width of

6 (10°g/cm?)

FIG. 11. The maximum stress vs the radRof the panel for
two different opening angleg.

For all cases, i.e., fop<# and B>, the maximum
stresso, measured as mentioned above, and defined as the

o . . force per unit area necessary to buckle the péhel area is
the strip is the distance separating the two flanks of th(?he qlf)antityhxl whereh anﬁl are the thicEness and the
crease at midcrease. If we suppose that the off-plane vari '

. . N . 'Sidth of the panel, respectivelyaries with the radius as
tions of the sheet are dominated by contributions in the d"l/R, in agreement with the theoretical results of vorrigan

rection perpendicular to the crease lengih other words, . . .
2, 2 5 . 54302 ) and Tsien 10], Koiter [23], and Timoshenkd19], for a cyl-
Vi~ d7¢/0x7), we find thate, ~DX*/d°R", whereR is the inder or a cylindrical panel with periodic boundary condi-

radius of the panel. As the structure we observe is composegl
of lozengesd~AX, whereA is a constant close to 1. We ’
then findE,~DX?/ARZ. Per unit length, the bending energy an
can then be written aBX/AR?. As a consequence of the

creases’ self-similarity, we assume that the energy of th
singularity e, is constant and does not depend on the typica
sizes in the problem, namely, the panel radius and the crea:

. ; " . magnitude of the Young modulds of rolled copper. One
Iength.rf\s ltdhe strfgs IS |];Oiﬁsed attt.i;)e tslngul'arltllej., th'sthenéan notice that for a larger width of the panel the experimen-
ergy should contain a € contributions Including theé points collapse on a better fit. This is due to the fact that

stretching energy. The singularity energy per unit length $he free boundarieéhat are the unclam
ped edgdsmave a
then 2,/X. The factor 2 corresponds to the fact that eac tronger effect in the case of a panel with a small opening

crease is bounded by two singularities. The total energy peéngle (3< ), for which the panel curvature is not necessar-

. . _ 2 - . . .
ur.“rt] length 'So;(hef‘f ;IZDXIQE ”L/éelhlle M|kr]1|m|zmg 7 ily kept constant during the compression. We also studied
with respect toX gives X*~(2A&, /D)R". In the argument ¢ \ariations of the stress as a function of the longitudinal
above we assumed that the contribution to the crease bend'?ﬁ’rection i.e., as a function of the lengthof the cylindrical
energy was essentially due to the crease curvature far aWi?%\nel. We noticed no remarkable variation of the critical

from the §|ngular|t|es after the creases.had_ nucleated.; we di ress, except the one due to systematic experimental errors
not take into account membrane bending in the longitudinal nd noise

direction (the line joining the singularities is itself slightly
benj. Also, as the scaling is performed far from the cone tip,
we did not take into account logarithmic contributions to the
bending energy5,24—-264. As the creases are self-similar
(for an opening anglg at which the crease length and the In order to characterize the local geometry of the crease
vertical deflection saturatethe singularity energy was as- fully, we built a profilometer which consists of a moving

Figure 11 shows the maximum stress for two opening

gles(smaller and larger than a half-cylindeWe do not

emphasize this last result, as the critical force is difficult to
easure because the occurrence of creases is sudden and
ubcritical. However, the fit to the curve gives a good order

VI. LOCAL PROPERTIES: PROFILOMETER
MEASUREMENTS
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the same order of magnitude as the bending energy, which

FIG. 12. The profiles of the crease along the transverse directiogauses the permanent scar. The distasicés equal to 4.6
(cut along the directioBB in Fig. 5 for different positions along mm and corresponds to a radius of curvatur€ bf about
the crease. In the inset, we show the profile of the crease at th& 9 mm. We notice that the value of the curvature at the
singularity, the s_can_is in the angitudinal _direction_along t.he creas&ingularity is smaller than b/ which means that the sheet is
(cut along the directiomA in Fig. 5 crossing the singularity. not totally folded, in which case its radius of curvature would

be close tah. In order to support our arguments, let us find

table and a tip connected to a transducer controlling the dighe curvature at which the plate suffers bending just beyond
placement of the tip. The moving table on which the sampléHook’s law (plastic deformatiop) we begin with a beam of
is pasted has a constant velocity of 0.2 mm/s. This profilorectangular cross section. We assume that the radius of cur-
meter is able to resolve less than 0.01 mm in the vertical angature of the middle surface produced by bending.i# is
horizontal directions. The whole is connected to a computewell known that the unit elongation of a fiber at distaryce
where the data are stored and treated. from the neutral surface is=y/r. So the total deformation

In Fig. 12 we show different profiles of a 25-mm crease.A (compression of the inner surface and tension of the outer
These profiles are obtained by scanning the crease in thegion is the sum of the maximum elongation and the maxi-
transverse direction of the creagmut BB in Fig. 5. The = mum contraction; that i\ =h/r, whereh is the thickness of
different profiles correspond to different position from thethe plate. The Young modulug is given by the fit to the
singularity to the middle of the crease. It can be seen, apeurve in Fig. 11, with the formula giving the buckling stress
proaching the singularity, that the profiles become sharperersus the radiugl0,8,19. The slope in Fig. 4 also gives the
In the inset of Fig. 12, we show the profile of the plate alongsame order of magnitude as the Young modufusing
the crease, called the longitudinal direction in the figi@lso  Hook’s law before buckling From the expressionr=¢E
called cutAA in Fig. 5), and across the singularity. It is easy and the maximum load in Fig. 4, we find a deformation of
to notice a sharp cusp of the sheet at the singularity. In orde2 x 10~ 2 which corresponds, in the case of a thickness of 0.1
to measure the curvature at the top of the profile in Fig. 12mm, to a curvature and a radius of curvature of approxi-
we fit the profile tip to a parabola, and identify the parabolamately 0.2 mm* and 5 mm, respectively.
curvature with the crease curvature at the top of the crease. The cutoff length is then of the same order as the critical
In Fig. 13 we plot the crease transverse curvaidr@as a radius of curvature necessary to produce a plastic deforma-
function of the distance along the crease. In Fig. 13 the zertion in the sample. In the following we check if the varia-
corresponds to the singularity. We observe that the curvaturgons of the curvature with the distance from the singularity
decreases when we move away from the singularity. The fiare independent on the geometry in which thecone is
to the data is an exponential of the foifpe (9, where  obtained. We perform the same measurements as before for a
C, is the curvature of the crease at the singularity, and isl cone similar to the one shown in Fig. 1. Suck @one is
equal to 0.55 mm?, andd, corresponds to a cutoff distance. obtained by pushing a rounded tip on the center of a circular
This distance bounds the region where the curvature is corplate, along the plate principal axis, while keeping the border
centrated, and where a permanent crescent shape is visitbéthe plate free to move in a circular frame of radius slightly
around the singularity. smaller than the sample radius. The inset of Fig. 13 is the

In Ref. [5], the region near thd-cone tip where all the curvature of one of the ridges of suchdacone made in a
energies are of the same strength was calledniher region  plate of the same copper sheétgy. 1). From this figure one
In our experiment we find a naturi@ner regionin which the  can notice that the curvature decreases exponentially when
deformation is mostly plastic and the extensional energy is ofmoving away from the singularity. From the best fit of the
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curve we also obtain a characteristic distance on the order dérge crease without a singularity and the singularity’s con-
5 mm which is very close to the value obtained for cylindri- tribution. This selection is due to the fact that, for a large
cal panels. Additional measurements, on the sdmneenes, panel, the appearance of several singularities compensates
have shown that the distanak does not depend on the for the divergence of the bending energy corresponding to a
d-cone opening angle when this latter is small. In this sectiodarge crease, which, when the singularity contribution is not
we showed that the stress is focused in a region around thHeken into account, scales lik€. As the creases are self-
singularities whose radius @, . The stress is not distributed similar, we assumed in our scaling arguments that the energy
everywhere in the panel but is concentrated only at the sinef the singularity is constant at nucleation. This assumption
gularities. If we evaluate the bending energy of a curveds in agreement with our experimental results. We also ne-
plate, having 5 mm as the radius of curvature, over a surfacglected logarithmic contribution25,24), as they are negli-

dg, we find that it is of the same order of magnitudeegs gible with respect to the algebraic expression of the bending

introduced in Sec. IV. energy written above and also introduced in REfs12]. In
fact, it is well known that for thin plates the bending energy
VIl. CONCLUSION is much smaller than the stretching enef@g]. Therefore,

further compression leads to bending other regions and

In this paper we investigated both the global and locahucleating more creases rather than increasing the already
properties of a crumpled cylindrical panel considered as @xisting deflections. From local measurements of the crease
first approach to a real crumpled sheet. By compressing aurvature, we could characterize a region where all the stress
cylindrical panel, we were able to nucleate creases, ending focused and where the deformation is plastic. The curva-
up with singularities. We found that cylindrical panels can beture energy for a plastic deformation is of the same order of
divided into two categories, depending on the opening anglénagnitude as the singularity energy. If we evaluate the cur-
B. The two categories are panels with small opening anglegature energy for a copper panel with a radius of curvature of
and panels with large opening angles. For the first categorys mm, we find that this is of the same order of magnitude as
only one crease appears, and it has almost the size of thRe singularity energy introduced previously. This energy is
width of the panel. This crease grows in size as the compresbtained by integrating the curvature squared over a circle of
sion is kept, and the singularities are ejected out of the panetadiusd,, measured from profile measurements. Finally, we
leaving a wake of high curvature similar to the figures onethink that the singularity energy can be written properly in
can encounter in growth process. For a large opening angléerms of thed-cone opening angle introduced in Rdf5,24),
the structure is richer than the previous category. The creaseg each singularity is the tip of @ cone. The pattern ob-
appear as a set af cones in opposition, geometrically situ- served on a postbuckled panel is proof that the only devel-
ated in the direction perpendicular to the compression direcopable surface mapped on a buckled cylinder & @one.
tion, and they depend on the topological and geometric char- |n the future we will explore an eventual dependence of
acteristic of the panel under load. We also noticed that thene region of plastic deformation on the macroscopic size

panel opening angle is closely related to the opening angle afounding thed cone. Further work exploring the dynamics
thed cones that form the crease. The number of creases that the singularities and their interactions is also underway.

fit in the panel increases witB. Their size decreases with an
increase of the panel opening angleThe crease length and
the maximum vertical deflection saturate as the opening
angle approaches2 We measured the crease lengthat We are grateful to R. Labbé.. Mahadevan, and P. Um-
B~ 2 and found that it goes likR. For 8~ 2, the crease banhowar for helpful discussions. This work was supported
number is constant, and the crease lengths are like that ofia part by the DICyT of the University of Santiago of Chile,
closed cylinder. We found that this behavior is a conseby the Center for Non Linear Physics and Complex Phenom-
guence of the competition between the curvature energy of ana of Santiago, and by tl@atedra Presidential
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