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Experimental study of crease formation in an axially compressed sheet

Sahraoui Chaı¨eb and Francisco Melo
Departamento de Fı´sica de la Universidad de Santiago, Avenida Ecuador 3493, Casilla 307, Correo 2, Santiago, Chile

~Received 26 March 1997!

In our study of crease formation in a cylindrical panel subject to axial compression, we found that the
maximum vertical deflectionz increases in the orthoradial directionl and saturates when the panel is larger
than half a cylinder. The length of the creaseX decreases by increasing the panel opening angle, and saturates
to a constant value when the opening angle is close to 2p. The stress corresponding to initial crease formation
goes as 1/R, whereR is the radius of curvature of the panel. Profilometric measurements reveal the presence
of a region around the singularity where the stress is focused and where the deformation is plastic.
@S1063-651X~97!03009-2#

PACS number~s!: 46.30.Lx, 62.20.Fe, 68.55.Jk
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I. INTRODUCTION

Thin plates or membranes in a crumpled state occu
many systems at various aspects and length scales,
membranes of polymerized phospholipids to crashing of c
and cans@1–4#. A crumpled sheet is characterized by a d
tribution over its surface of sharp ridges and perman
creases. Each crease terminates in pointlike defects orsingu-
larities, which are points where the yield limit of the materi
has been exceeded@5#. Unlike phospholipidic membranes
the crumpling of a sheet of macroscopic elastic material~pa-
per, aluminum, copper, polypropylene, etc.! requires com-
pression, such as we apply in making a paper ball. In
case, scars left after the crumpling process are due to
focusing of the stress at singularities.

From a theoretical point of view, the relation between t
geometric aspects of the formation of an isolated singula
on a surface and the singularities mechanical origin is r
tively well understood. One of the key points is that partic
lar solutions of the Fo¨ppl–von Kármán ~FvK! equations de-
scribing large deformations of thin plates are developa
cones@5#. It is important to notice that developable surfac
and particularly developable cones are obtained from, or
plied to, a plane without changing distances. They have z
Gaussian curvature, and nonzero mean curvature@6#. A d
cone has two regions of opposite curvature, one convex
the other concave. The concave region is separated from
convex region by two ridges~Fig. 1!. Another characteristic
of d cones is that any circle of radiusr whose center is at the
singularity has its perimeter 2pr after thed cone is formed
as well; i.e., the mapping between a plane and ad cone is
isometric@7#.

Even though the FvK equations do not explicitly inclu
an initial curvature, singular solutions are possible. In pr
tice, in order to generate singularities in a sheet, it is nec
sary to bend it, pushing the bent sheet in the axial direc
causes singularities to nucleate. For instance, when the
edges of a flat sheet of paper are pushed together, one
serves only a wavy pattern: no creases, sharp ridges, or
gularities appear. The equations used when an initial cu
ture is introduced are commonly called the Donn
equations, and are a slight modification of the FvK equati
561063-651X/97/56~4!/4736~8!/$10.00
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@8–10#. To our knowledge, the Donnell equations have n
been studied systematically.

Further studies based on FvK equations obtained a us
relation between the deformation energy and the size o
ridge in a bent sheet@1,11,12# by using scaling argument
and boundary layer analysis. Additionally, an efficient n
merical method to solve the FvK equations in the case o
crumpled sheet was proposed@13#. These works were suc
cessful in describing the main features of a simple crump
surface, but none has considered realistic boundary co
tions. Numerical methods seem more suitable to investig
boundary conditions effects@1,13#.

Experimentally, a well-controlled nucleation of singula
ity is not an easy task. However, apart from a crumpled sh
of paper, singularities can be seen in a postbuckled cylin
Since the pioneering work of von Ka´rmán and co-workers
@10,14#, several studies were devoted to initial stage cylind
buckling for industrial and aeronautical purposes@10,14–
16#. At the first stage of cylinder buckling a pattern o
squares appears. Singularities were not investigated, as
appear only when the cylinder is postbuckled. Although v
Kármán predicted that for short cylinders in the postbuckli
regime sharp ridges and narrow diamonds appear, non
these experiments reported studies either on singularitie
on short cylinders~the singularity appears at the meetin
point of four squares!. However, it was stated that narro
diamonds could have been seen in the case of short cylin

FIG. 1. A d cone obtained by bending and compressing a pla
sheet.
4736 © 1997 The American Physical Society
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56 4737EXPERIMENTAL STUDY OF CREASE FORMATION IN . . .
@16#. Further studies focused on the effect of initial irreg
larities on the critical load and on the postbuckling equil
rium load. It was shown that although initial imperfectio
were not eliminated, the results were reproducible under
same experimental conditions@15#.

In this paper we study the nucleation of singularities in
thin cylindrical panel submitted to axial compression. W
show that, in this case, a crease can be seen as two opp
d cones which tips are separated by a distance equal to
crease length. In the following, the crease lengthX is the
distance separating the two singularities, and the ridge is
line shown in Fig. 7. We investigate mechanical and geom
ric properties of creases, namely, critical load, radius of c
vature, and characteristic sizes as a function of geome
parameters.

This paper begins with a description of the experimen
setup and sample preparations. In Secs. III and IV, we
scribe the patterns observed in both narrow and wide pan
Section IV includes measurements of the global propertie
the patterns~vertical deflection and crease length!. In Sec. V,
we present results concerning the critical load and its dep
dence on the radius of the panel. Section VI is devoted
local properties of a single crease. Finally, a conclusion
presented.

FIG. 2. The geometry used in our experiment. Right top is a s
view, and the bottom is an end view.

FIG. 3. The compression machine.
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II. EXPERIMENTAL CONSIDERATION

We submit a panel of thicknessh, width l in the circum-
ferential direction, lengthL, opening angleb, and radiusR
to axial compression~Fig. 2!. We chose this geometry be
cause it is the simplest curved surface one can crumple.
possible to consider a hyperbolic or parabolic shape,
such surfaces lie in the same class as the cylinder, and
expect no qualitative difference with respect to the nuc
ation of singularities.

Our cylindrical panels are 0.1-mm-thick sheets of DH
copper. The thickness of the panels is constant within 1
Such panels are obtained by cold rolling a thicker plate. T
process produces what is called residual forces within
bulk of the plate, and creates an anisotropy with respec
the two in-plane directions, parallel and perpendicular to
rolling direction. In order to eliminate the flattening induce
strain of the grains, we anneal the sheet@17,18#. The residual
stress is checked by measuring the deformation of the
cell of the copper crystal with respect to a cubic one us
x-ray diffraction.

Cylindrical shells are compressed by a machine wh
consists of two parallel arms. One arm is fixed, while t
other is moved smoothly at a constant compression
monitored by a microstepping motor~Parker, Compumotor!.
The moving arm is pushed toward a fixed arm by a scr
ball of diameter 30 mm. A vertical disc with a series
0.2-mm-wide and 2-mm-deep concentric grooves is moun
on each arm. The radius of the grooves varies from 13.9
58.45 mm. One disc is connected to a load cell~RevereRT
Transducers Inc. Model 363/9363 Cerritos, CA! which mea-
sures the force on the sample. The load cell is connected
computer which stores and analyzes the data~Fig. 3!. We
have checked the rigidity of our load cell, and found that a
possible shortening, due to deformations, is less t
531025 mm/kgf over a panel’s deformation of about 4 m
and a force range of 1000 kgf. The load cell is capable
resolving 0.5 kgf over a range of 1000 kgf.

To check the parallelism of the two disks we simult
neously compress two panels of the same size and the s

e

FIG. 4. Three different runs, under the same conditions, sh
ing the load vs the displacementd for a panel under compression
The parameters areL590 mm, l 560 mm, andR532.7 mm.
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4738 56SAHRAOUI CHAÏEB AND FRANCISCO MELO
radius by placing the panels opposite each other between
two discs. When the two discs are parallel, the buckling fo
must be twice the buckling force of a single panel. The co
pression rate is kept low~0.01 mm/s!, which reduces the
effects of initial off-plane imperfections and irregularities
the clamped edges due to motion and initial misalignmen
the panel within the grooves. Although it was shown the
retically @19# that imperfections, curved edges near t
grooves, have no serious effects on the magnitude of
critical force, since they are damped out exponentially in
compression direction@20#, we nevertheless attempt to avo
them. Initial imperfections can sometimes lower the critic
load @10#. It was also shown in experiments on closed cyl
ders that the postbuckling load is insensitive to initial irreg
larities @15#. In contrast, we observed that the pattern str
ture is strongly affected by initial imperfections, such
small deflections of the clamped edges on which the pan
supported or the nonparallelism of the panel. For instance
initial angle of the order of a hundredth of a radian betwe
the supporting edges can affect the results. The critical fo
corresponds to the occurrence of a crease, but it is difficu
characterize because the crease nucleation resembles a

FIG. 5. A crease which appears in the middle of a small open
angle panel. The cutsAA and BB are the line followed by the
profilometer and called longitudinal and transversal directions
Fig. 12.

FIG. 6. Force vs the displacement forb54.3. Note the second
ary peaks before the maximum load; each one corresponds to
nucleation of a crease.
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critical transition, and the creases that fill the panel do not
appear at the same time. We then measure the maxim
force necessary to buckle the panel. The jump in equilibri
position as the crease appears involves a release of el
energy, and thus explains the rapidity of the buckling proc
justifying the subcritical character of the transition.

In our experiments, contrary to the case for full cylinde
one has an additional parameter, the opening angleb in Fig.
2, which is variable. The dependence of the crease prope
on l , R, andb is discussed in the following sections.

III. SMALL OPENING ANGLE

The results discussed in this section are obtained fob
less than 2 rad. The critical force necessary to create a cr
for three different runs under the same conditions cor
sponds to the peaks in Fig. 4. During compression, the fo
increases nearly linearly except at the beginning of the lo
ing when the panel slides into the grooves. Even though s
rearrangements occur, the critical force is reproducible
within 5%.

For the runs shown in Fig. 4 and for all lengthsL, the
critical load is equal to the maximum load necessary to c
lapse the panel. At the critical force, the stored elastic ene
is released abruptly by forming a crease at the middle of
panel. From Fig. 5, one can see that a crease is compos
two opposited cones with common concave parts. In th
following, the line limiting the crease deflection and the re

g

n

the

FIG. 7. The structure observed when compressing a large pa
With further compression, another series of creases appears an
chain of creases develops in the circumferential direction. T
opening angle in this case is 4.33 rad.

FIG. 8. Normalized crease length vs the opening angleb.
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56 4739EXPERIMENTAL STUDY OF CREASE FORMATION IN . . .
of the panel will be called theridge, and the line joining the
singularities will be called thecrease length. The distance
between thed-cone vertices is the crease lengthX.

We measured the diamond-shaped pattern opening a
a (a is defined in Fig. 5!, and found it to be of the order o
88°, close to the value of 90° observed for a closed cylin
@9#. For panel lengths larger than 5R, the strip buckles like a
rectangular strip after the occurrence of a crease@21#. How-
ever, for narrow panels with an intermediate opening an
while keeping the panel under compression the tip of
crease propagates toward the free borders and leaves b
a wake of high curvature. This phenomena, which shows
presence of a dynamic of the tip, will be the object of futu
work.

We remark that for closed cylinders the wavelength of
pattern in the direction parallel to the compression is giv
by the radius of the cylinder times the thickness@19#. How-
ever, in our case the size of the crease is also selected b
opening angle. This point will be described later in the te

IV. LARGE OPENING ANGLE

In this section, the results obtained correspond to an op
ing angleb larger than 2 rad. Figure 6 shows the loadi
force versus displacement; several peaks occur before

FIG. 9. Normalized vertical deflection vs the opening angleb in
radians.

FIG. 10. Crease lengthX as a function of the panel radius forb
5 6 rad,L540 mm.
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maximal load after which the force decreases. These sec
ary peaks correspond to the nucleation of creases. The
and maximum peak corresponds to the buckling of the wh
panel, after which no more creases appear. The load, a
the maximum for smallb ~Fig. 4! decreases more rapidl
than the load for largeb ~Fig. 6!: In the first case, the pane
is folded after the first crease appears.

The structure observed after all the creases have appe
resembles a string of diamonds~Fig. 7! similar to those ob-
served in experiments on thin compressed circular cylind
although they have observed only squared creases@15,8#.
The anglea is smaller than the angle in the case for clos
cylinders. In this case the creases are more flattened.
vertical deflection is more pronounced, and the diamo
flanks are sharper. We measured the anglea of these
diamond-shaped patterns and found it to be between 75°
80°, and independent of the opening angle, but smaller t
the value of 90° predicted theoretically@9#.

If one leaves a long buckled panel under compress
another series of diamonds appears, filling the panel in thx
direction. In this work we considered only the first series,
the second one appears after the first diamonds have
totally folded, which affects the lengthL of the panel. As the
width increases, the number of creases and the wavele
~size of each crease! selected also increase. The crease len
X decreases, as is shown in Fig. 8, where we plot the cre
length normalized by the radius.

One can observe that the crease lengthX decreases very
quickly whenb goes to 2p. For b;2p the crease length
saturates to a valueX0 which, we believe, corresponds to th
crease length for closed cylinders. We also measured
maximum vertical deflectionz as a function of the opening
angleb. The vertical deflection increases when the angleb
increases, and tends to saturate when the panel is larger
a half cylinder, i.e.,b;p. Figure 9 shows the variations o
the maximum vertical deflection versus the opening ang
We believe that, when the opening angle approaches 2p, the
vertical deflection goes to a value which corresponds to v
tical deflections in the case of a buckled closed cylinder.
both crease length and maximum deflection saturate w
the opening angle approaches 2p, we measured the lengt
crease forb 5 6 rad as a function of the panel radiusR for
a lengthL 540 mm. Figure 10 shows the variations of th
crease length with the radius of the panel. From the linea
to the curve,X;0.7R. In our experiment, the singularitie
and creases nucleate in a subcritical way, releasing the el
energy stored in the panel during the compression. T
creases appear suddenly by causing an inward deflectio
the panel. von Ka´rmán and Tsien predicted that in the case
thin closed cylinders the wavelength of the pattern is giv
by the ratio of the radius to the thickness. The transition fr
squares to ellipses is controlled by the ratio of the wa
amplitude of the cylindrical shell buckled shape and t
thickness, but this model failed to give these sharp diamo
at large deflections@10#. We also notice, for a fixed large
opening angle, that the creases are self-similar. In fact,
increasing the radius of the panel we increase in the s
way the distance which separates thed cones’ tips that fit in
the panel. The lateral dimension of the crease, in the di
tion of the load~the x direction!, also increases with the
radius. In the next paragraph we will show why the crea
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4740 56SAHRAOUI CHAÏEB AND FRANCISCO MELO
depends in such a way versus the radius.
To explain the origin of the creases self-similarity and t

reason for the dependence ofX on R for a large opening
angle, we assume that the energy of a buckled panel ca
separated into two contributions, namely, the crease cu
ture energy far from the singularities, and the singular
energy. Subsequently, we will show how the competit
between these energies determines the selection of
creases length. The curvature energy of the crease far
the singularities, without the term containing the Gauss
curvature is,Eb5D*ds(¹2z)2, whereD is the rigidity and
is equal toEh3/24(12s2) @22#. Following Refs.@1,12,22#,
we can evaluate this energy far from the two singulariti
i.e., in a strip of lengthX, depthz, and widthd. The width of
the strip is the distance separating the two flanks of
crease at midcrease. If we suppose that the off-plane va
tions of the sheet are dominated by contributions in the
rection perpendicular to the crease length~in other words,
¹2z;]2z/]x2), we find thatEb;DX5/d3R2, whereR is the
radius of the panel. As the structure we observe is compo
of lozenges,d;AX, whereA is a constant close to 1. W
then findEb;DX2/AR2. Per unit length, the bending energ
can then be written asDX/AR2. As a consequence of th
creases’ self-similarity, we assume that the energy of
singularityep is constant and does not depend on the typ
sizes in the problem, namely, the panel radius and the cr
length. As the stress is focused at the singularities, this
ergy should contain all the contributions including t
stretching energy. The singularity energy per unit length
then 2ep /X. The factor 2 corresponds to the fact that ea
crease is bounded by two singularities. The total energy
unit length is thenF 5DX/AR212ep /X. Minimizing F
with respect toX givesX2;(2Aep /D)R2. In the argument
above we assumed that the contribution to the crease ben
energy was essentially due to the crease curvature far a
from the singularities after the creases had nucleated; we
not take into account membrane bending in the longitud
direction ~the line joining the singularities is itself slightl
bent!. Also, as the scaling is performed far from the cone t
we did not take into account logarithmic contributions to t
bending energy@5,24–26#. As the creases are self-simila
~for an opening angleb at which the crease length and th
vertical deflection saturate!, the singularity energy was as

FIG. 11. The maximum stress vs the radiusR of the panel for
two different opening anglesb.
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sumed constant~or a slowly varying function of the opening
angleb), and independent of the length scales in the pr
lem. As a result of the competition between a bending ene
which favors large creases and a singularity energy wh
favors small creases, we found thatX;R, in agreement with
the experimental results of Fig. 10 and with the fact that
singularity energy is constant and independent of the cre
length and of the panel radius. From the best fit to the cu
in Fig. 10, we find thatep;0.25D.

The d-cone opening angle is related to our experimen
angleb. In fact, for a givenR, smaller isb, is thed-cone
angle is higher. If we fix the opening angle~at which the
crease saturates!, and vary the radius as in Fig. 10, fit th
same crease number in the panel, and the samed-cone num-
ber, the distance between thed-cone vertices will then vary.
On the other hand, if we fix the radius and vary the open
angle, the number of the creases vary, and so do t
lengths. The creases are no longer self-similar. The singu
ity curvature and energy are not constants.

We also studied panels for which the opening angle
large, but whose length is much larger than the radius@~3–4!
R#. In this case the structure of the pattern depends dra
cally on the initial imperfections, and the stability of the sh
is difficult to control. In addition, the size of the crease i
creases in the direction of the compression, and numbe
the circumferential direction decreases with the increas
length of the panel.

V. CRITICAL LOAD MEASUREMENT

For all cases, i.e., forb,p and b.p, the maximum
stresss, measured as mentioned above, and defined as
force per unit area necessary to buckle the panel~the area is
the quantityh3 l , whereh and l are the thickness and th
width of the panel, respectively! varies with the radius as
1/R, in agreement with the theoretical results of von Ka´rmán
and Tsien@10#, Koiter @23#, and Timoshenko@19#, for a cyl-
inder or a cylindrical panel with periodic boundary cond
tions.

Figure 11 shows the maximum stress for two open
angles~smaller and larger than a half-cylinder!. We do not
emphasize this last result, as the critical force is difficult
measure because the occurrence of creases is sudden
subcritical. However, the fit to the curve gives a good ord
of magnitude of the Young modulusE of rolled copper. One
can notice that for a larger width of the panel the experim
tal points collapse on a better fit. This is due to the fact t
the free boundaries~that are the unclamped edges! have a
stronger effect in the case of a panel with a small open
angle (b,p), for which the panel curvature is not necess
ily kept constant during the compression. We also stud
the variations of the stress as a function of the longitudi
direction, i.e., as a function of the lengthL of the cylindrical
panel. We noticed no remarkable variation of the critic
stress, except the one due to systematic experimental e
and noise.

VI. LOCAL PROPERTIES: PROFILOMETER
MEASUREMENTS

In order to characterize the local geometry of the cre
fully, we built a profilometer which consists of a movin
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56 4741EXPERIMENTAL STUDY OF CREASE FORMATION IN . . .
table and a tip connected to a transducer controlling the
placement of the tip. The moving table on which the sam
is pasted has a constant velocity of 0.2 mm/s. This profi
meter is able to resolve less than 0.01 mm in the vertical
horizontal directions. The whole is connected to a compu
where the data are stored and treated.

In Fig. 12 we show different profiles of a 25-mm creas
These profiles are obtained by scanning the crease in
transverse direction of the crease~cut BB in Fig. 5!. The
different profiles correspond to different position from t
singularity to the middle of the crease. It can be seen,
proaching the singularity, that the profiles become shar
In the inset of Fig. 12, we show the profile of the plate alo
the crease, called the longitudinal direction in the figure~also
called cutAA in Fig. 5!, and across the singularity. It is eas
to notice a sharp cusp of the sheet at the singularity. In o
to measure the curvature at the top of the profile in Fig.
we fit the profile tip to a parabola, and identify the parab
curvature with the crease curvature at the top of the cre
In Fig. 13 we plot the crease transverse curvatureC as a
function of the distance along the crease. In Fig. 13 the z
corresponds to the singularity. We observe that the curva
decreases when we move away from the singularity. The
to the data is an exponential of the formC0e2(r /dc), where
C0 is the curvature of the crease at the singularity, and
equal to 0.55 mm21, anddc corresponds to a cutoff distanc
This distance bounds the region where the curvature is c
centrated, and where a permanent crescent shape is v
around the singularity.

In Ref. @5#, the region near thed-cone tip where all the
energies are of the same strength was called theinner region.
In our experiment we find a naturalinner regionin which the
deformation is mostly plastic and the extensional energy i

FIG. 12. The profiles of the crease along the transverse direc
~cut along the directionBB in Fig. 5! for different positions along
the crease. In the inset, we show the profile of the crease a
singularity, the scan is in the longitudinal direction along the cre
~cut along the directionAA in Fig. 5! crossing the singularity.
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the same order of magnitude as the bending energy, w
causes the permanent scar. The distancedc is equal to 4.6
mm and corresponds to a radius of curvature 1/C of about
4.9 mm. We notice that the value of the curvature at
singularity is smaller than 1/h, which means that the sheet
not totally folded, in which case its radius of curvature wou
be close toh. In order to support our arguments, let us fin
the curvature at which the plate suffers bending just bey
Hook’s law ~plastic deformation!; we begin with a beam of
rectangular cross section. We assume that the radius of
vature of the middle surface produced by bending isr . It is
well known that the unit elongation of a fiber at distancey
from the neutral surface ise5y/r . So the total deformation
D ~compression of the inner surface and tension of the o
region! is the sum of the maximum elongation and the ma
mum contraction; that is,D5h/r , whereh is the thickness of
the plate. The Young modulusE is given by the fit to the
curve in Fig. 11, with the formula giving the buckling stre
versus the radius@10,8,19#. The slope in Fig. 4 also gives th
same order of magnitude as the Young modulus~using
Hook’s law before buckling!. From the expressions5eE
and the maximum load in Fig. 4, we find a deformation
231022 which corresponds, in the case of a thickness of
mm, to a curvature and a radius of curvature of appro
mately 0.2 mm21 and 5 mm, respectively.

The cutoff length is then of the same order as the criti
radius of curvature necessary to produce a plastic defor
tion in the sample. In the following we check if the varia
tions of the curvature with the distance from the singular
are independent on the geometry in which thed cone is
obtained. We perform the same measurements as before
d cone similar to the one shown in Fig. 1. Such ad cone is
obtained by pushing a rounded tip on the center of a circu
plate, along the plate principal axis, while keeping the bor
of the plate free to move in a circular frame of radius sligh
smaller than the sample radius. The inset of Fig. 13 is
curvature of one of the ridges of such ad cone made in a
plate of the same copper sheets~Fig. 1!. From this figure one
can notice that the curvature decreases exponentially w
moving away from the singularity. From the best fit of th

n

he
e

FIG. 13. The crease transverse curvature as a function of
longitudinal distance from the singularity. Inset: The curvatu
along the ridge vs the distance to the singularity of ad cone similar
to thed cone of Fig. 1 and made of copper.
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curve we also obtain a characteristic distance on the orde
5 mm which is very close to the value obtained for cylind
cal panels. Additional measurements, on the samed cones,
have shown that the distancedc does not depend on th
d-cone opening angle when this latter is small. In this sect
we showed that the stress is focused in a region around
singularities whose radius isdc . The stress is not distribute
everywhere in the panel but is concentrated only at the
gularities. If we evaluate the bending energy of a curv
plate, having 5 mm as the radius of curvature, over a sur
dc

2 , we find that it is of the same order of magnitude asep

introduced in Sec. IV.

VII. CONCLUSION

In this paper we investigated both the global and lo
properties of a crumpled cylindrical panel considered a
first approach to a real crumpled sheet. By compressin
cylindrical panel, we were able to nucleate creases, en
up with singularities. We found that cylindrical panels can
divided into two categories, depending on the opening an
b. The two categories are panels with small opening ang
and panels with large opening angles. For the first categ
only one crease appears, and it has almost the size o
width of the panel. This crease grows in size as the comp
sion is kept, and the singularities are ejected out of the pa
leaving a wake of high curvature similar to the figures o
can encounter in growth process. For a large opening an
the structure is richer than the previous category. The cre
appear as a set ofd cones in opposition, geometrically situ
ated in the direction perpendicular to the compression di
tion, and they depend on the topological and geometric c
acteristic of the panel under load. We also noticed that
panel opening angle is closely related to the opening angl
thed cones that form the crease. The number of creases
fit in the panel increases withb. Their size decreases with a
increase of the panel opening angleb. The crease length an
the maximum vertical deflection saturate as the open
angle approaches 2p. We measured the crease lengthX at
b;2p and found that it goes likeR. For b;2p, the crease
number is constant, and the crease lengths are like that
closed cylinder. We found that this behavior is a con
quence of the competition between the curvature energy
it-

v
,

. A
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large crease without a singularity and the singularity’s co
tribution. This selection is due to the fact that, for a lar
panel, the appearance of several singularities compens
for the divergence of the bending energy corresponding
large crease, which, when the singularity contribution is
taken into account, scales likeX. As the creases are sel
similar, we assumed in our scaling arguments that the ene
of the singularity is constant at nucleation. This assumpt
is in agreement with our experimental results. We also
glected logarithmic contributions@25,24#, as they are negli-
gible with respect to the algebraic expression of the bend
energy written above and also introduced in Refs.@1,12#. In
fact, it is well known that for thin plates the bending ener
is much smaller than the stretching energy@22#. Therefore,
further compression leads to bending other regions
nucleating more creases rather than increasing the alre
existing deflections. From local measurements of the cre
curvature, we could characterize a region where all the st
is focused and where the deformation is plastic. The cur
ture energy for a plastic deformation is of the same orde
magnitude as the singularity energy. If we evaluate the c
vature energy for a copper panel with a radius of curvature
5 mm, we find that this is of the same order of magnitude
the singularity energy introduced previously. This energy
obtained by integrating the curvature squared over a circl
radiusdc , measured from profile measurements. Finally,
think that the singularity energy can be written properly
terms of thed-cone opening angle introduced in Refs.@5,24#,
as each singularity is the tip of ad cone. The pattern ob
served on a postbuckled panel is proof that the only de
opable surface mapped on a buckled cylinder is ad cone.

In the future we will explore an eventual dependence
the region of plastic deformation on the macroscopic s
bounding thed cone. Further work exploring the dynamic
of the singularities and their interactions is also underwa
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@10# Th. von Kármán and H.-S. Tsien, J. Aeronaut. Sci,8, 303
~1941!.

@11# A. Lobkovsky, Phys. Rev. E53, 3750~1996!.
@12# T. A. Witten and H. Li, Europhys. Lett.23, 51 ~1993!.
@13# P. Patricio da Silva and W. Krauth, Int. J. Mod. Phys. C8, 427

~1997!.
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